Modelling and Optimisation of Energy Systems

2024/2025

Recommended prerequisite for participation in the module

The module is based on knowledge achieved when studying the 1st semester on the Master of Science in Energy Engineering on one of the Thermal Energy Engineering specialisations or similar.

Content, progress and pedagogy of the module

Learning objectives

Knowledge

  • Knowledge and comprehension and skills within synthesis of thermodynamic systems, their components and the interactions between these
  • Knowledge about the design, modelling and optimisation of systems involving thermal equipment such as engines, gas-turbines, steam turbines in stand-alone or combined cycle configurations
  • Knowledge about the conversion of plant-based biomass feedstocks and biological waste products to liquid fuels and the economic and strategic impact of the technologies involved
  • Knowledge and comprehension within the thermodynamic aspects of processes involved in thermal and fuel conversion plants which involve phase change and both sub- and supercritical operation
  • Knowledge and comprehension within the multiphase and chemical reaction based aspects involved in combustion processes and chemical process reactors

Skills

  • Be able to judge the usefulness of the used different scientific methods for analysis and modelling of the energy systems
  • Have an innovative and entrepreneurial behavior giving value for the developed system/apparatus.
  • Be able to verify the analytical and numerical approaches by means of experimental data
  • Be able to select an appropriate optimisation procedure used for the energy systems and evaluate the optimisation results

Competences

  • Be able to control the working and development process within the project theme, and be able to develop new solutions within energy systems
  • Be able to independently define and analyse scientific problems in the area of modelling and optimisation of energy systems also with cooperation with external partners and as part of multidisciplinary projects

Type of instruction

Problem based project organised work in groups where the students focus on proficient project leadership and management when finding their technical solution. The project can be made in cooperation with external partners and the project can be a disciplinary project, a cross disciplinary project or a part of a multi-disciplinary project, where several groups from the department do different parts of a larger project.

Finally, the project can also be a part of a so-called MEGA project also in cooperation with industry, where several project groups from more departments are participating, each doing their part of the large project to find a total solution.

The project should be based upon a thermal power plant or upon a fuel conversion process plant. The thermal plant could be a combined heat and power plant, a de-centralised power plant or a cooling plant. The plants should be simulated to achieve an optimum plant design in terms of overall plant economy. In the design of the plant analytical tools are to be applied, such as numerical optimisation, non-linear dynamical modelling or process integration. In addition the plant designed should be evaluated in relation to operational variations and/or the problems arising from start-up.

A workshop “PBL competence profile” to make an individual PBL competence profile is offered during the semester. More information can be found at www.ucpbl.net/education-courses/.

Extent and expected workload

Since it is a 15 ECTS project module, the work load is expected to be 450 hours for the student

Exam

Prerequisite for enrollment for the exam

  • An approved PBL competency profile is a prerequisite for participation in the project exam.

Exams

Name of examModelling and Optimisation of Energy Systems
Type of exam
Oral exam based on a project
ECTS15
Assessment7-point grading scale
Type of gradingExternal examination
Criteria of assessmentThe criteria of assessment are stated in the Examination Policies and Procedures

Additional information

Project on 2nd semester Thermal Energy and Process Engineering.

Facts about the module

Danish titleModellering og optimering af energisystemer
Module codeN-EE-K2-1A
Module typeProject
Duration1 semester
SemesterSpring
ECTS15
Language of instructionEnglish
Empty-place SchemeYes
Location of the lectureCampus Aalborg
Responsible for the module
Time allocation for external examinersB

Organisation

Education ownerMaster of Science (MSc) in Engineering (Energy Engineering)
Study BoardStudy Board of Energy
DepartmentDepartment of Energy
FacultyThe Faculty of Engineering and Science