Fluid and Water Wave Dynamics


Content, progress and pedagogy of the module

Learning objectives


  • Have knowledge about fluid kinematics
  • Have knowledge about stresses in fluids, equation of motion, constitutive models and Navier-Stokes equations
  • Have knowledge about ideal fluids and potential flows, including application of potential theory to simple problems for example circular cylinder and calculation of hydrodynamic mass
  • Have knowledge and understanding of Reynolds averaging and turbulence models
  • Be able to describe turbulent and laminar boundary layers including understanding of momentum equation for boundary layers
  • Be able to describe wind generated waves
  • Understand the application of potential theory to linear surface waves on a horizontal bed, including description and linearisation of boundary conditions, solving Laplace equation and the dispersion equation
  • Have knowledge about  kinematic and dynamic descriptions of linear surface waves, including particle velocities and accelerations, pressure field, particle paths, wave energy, energy flux and group velocity
  • Be able to describe  waves in shallow water, i.e. shoaling, refraction, diffraction and wave breaking
  • Have knowledge about statistical description of waves in time and frequency domain


  • Be able to describe assumptions and limitations of mathematical models for different types of flows
  • Be able to apply analytical and semi-empirical methods for mathematical description of fluid dynamic problems
  • Be able to calculate kinematics and dynamics of regular linear waves on deep and shallow water
  • Be able to analyse irregular waves in time and frequency domain using digital platforms


  • Be able to apply proper terminology in oral, written and graphical communication and documentation within fluid and water wave dynamics

Type of instruction

Lectures, etc. supplemented with project work, workshops, presentation seminars, lab tests and e-learning.

Extent and expected workload

Since it is a 5 ECTS course module, the work load is expected to be 150 hours for the student.



Name of examFluid and Water Wave Dynamics
Type of exam
Written or oral exam
Permitted aids
With certain aids:
For more information about permitted aids, please visit the course description in Moodle.
Assessment7-point grading scale
Type of gradingInternal examination
Criteria of assessmentThe criteria of assessment are stated in the Examination Policies and Procedures

Facts about the module

Danish titleStrømningslære og bølgehydraulik
Module codeE-SEE-K1-6B
Module typeCourse
Duration1 semester
Language of instructionEnglish
Empty-place SchemeYes
Location of the lectureCampus Esbjerg
Responsible for the module


Education ownerMaster of Science (MSc) in Engineering (Sustainable Energy Engineering)
Study BoardStudy Board of Build, Energy, Electronics and Mechanics in Esbjerg
DepartmentDepartment of Energy
FacultyThe Faculty of Engineering and Science