Analysis of Advanced Thermal Process Systems

2023/2024

Content, progress and pedagogy of the module

The module is based on knowledge achieved when studying the 2nd semester on the Master of Science in Energy Engineering with a thermal specialisation or Master of Science in Sustainable Energy Engineering with a specialisation in Process Engineering and Combustion Technology or similar.

Learning objectives

Knowledge

  • Have comprehension of the aspects of integration and analysis of advanced thermal processes regarding, for example:
    • Analysis and optimisation of thermal systems using techniques such as pinch analysis and heat exchanger network synthesis using mathematical programming techniques
    • Case: Modelling of part-load conditions in thermal systems including practical control aspects
    • Case: Modelling and integration of advanced fuel cell systems
  • Have knowledge about advanced fluid dynamical topics and system analysis of such systems related , for example:
    • Techniques involved in the design of heat/mass exchangers – shell-and-tube, plate, extended surface, evaporators, condensers, humidifiers, etc. Flow induced vibrations
    • Two-phase fluid flow, models, boiling, condensation and instabilities
    • Equations of State. Thermodynamic functions/properties. Maxwell’s relations.   Residual properties. Phase equilibrium and phase change
    • Heat transfer by radiation. Modelling methods (e.g.  Discrete Ordinate, Discrete Transfer, Monte-Carlo, etc). Gaseous radiative properties. CFD modelling of radiative heat transfer

Skills

  • Be able to identify the elements related to the control aspects of thermal systems
  • Be able to apply the knowledge gained to set up experiments on advanced fluid dynamical systems
  • Be able to apply the knowledge on advanced fluid dynamical systems related to the above topics

Competences

  • Independently be able to define and analyse scientific problems within the area of advanced thermal process systems and advanced fluid dynamical systems using digital platforms
  • Independently be able to be a part of professional and interdisciplinary development work within the area of thermal process systems and advanced fluid dynamical systems

Type of instruction

The course is taught by a mixture of lectures, workshops, exercises, mini-projects and self-study plus possible e-learning activities.

Extent and expected workload

Since it is a 5 ECTS course module, the work load is expected to be 150 hours for the student.

Exam

Exams

Name of examAnalysis of Advanced Thermal Process Systems
Type of exam
Oral exam
ECTS5
Assessment7-point grading scale
Type of gradingInternal examination
Criteria of assessmentThe criteria of assessment are stated in the Examination Policies and Procedures

Facts about the module

Danish titleAnalyse af avancerede termiske processer
Module codeN-EE-K3-10B
Module typeCourse
Duration1 semester
SemesterAutumn
ECTS5
Language of instructionEnglish
Empty-place SchemeYes
Location of the lectureCampus Aalborg, Campus Esbjerg
Responsible for the module

Organisation

Study BoardStudy Board of Energy
DepartmentDepartment of Energy
FacultyThe Faculty of Engineering and Science