Thermodynamics and Separation


Content, progress and pedagogy of the module

Learning objectives


Students who have passed the module should be able to

  • Explain the concept of thermodynamic state and of state variable
  • Explain subcritical and supercritical states
  • Describe the concept of degree of freedom of a thermodynamic system and the Gibbs phase rule
  • Explain the concept of volumetric equations of state (EOS)
  • Account for ideal gas EOS, virial EOS, correlations based on the corresponding state theorem, cubic EOS (van der Waals, Redlich-Kwong, Soave-Redlich-Kwong, Peng-Robinson)
  • Describe application of EOS to pure components and to mixtures
  • Explain first and second law of thermodynamics
  • Explain thermodynamic potentials (U, H, A, G)
  • Account for the concept of sensible and latent heat
  • Explain expressions for the dependency of the vapour pressure of a pure liquid on temperature
  • Describe heat exchangers
  • Explain isenthalpic valve expansions
  • Account for compressors and turbines
  • Account for vapour (gas) - liquid equilibrium (VLE) for mixtures
  • Explain diagrams for representing VLE for binary mixtures
  • Explain phase envelopes
  • Account for vapour (gas) – liquid 2-phase separators
  • Explain liquid – liquid equilibria (LLE)
  • Explain vapour (gas) – liquid – liquid (VLLE) equilibria
  • Explain diagrams for representing LLE and VLLE for binary mixtures
  • Account for vapour (gas) – liquid – liquid 3-phase separators


  • Calculate mass balances for steady and unsteady systems
  • Apply PV and PT state diagrams for pure fluids
  • Calculate volumetric properties of pure fluids and fluid mixtures
  • Calculate thermodynamic properties for pure fluids and fluid mixtures on the basis of the thermodynamic potentials
  • Calculate vapour pressure for pure liquids
  • Calculate energy balances for closed and open systems
  • Apply energy balances on the basic design of heat exchangers, expansion valves, compressors and turbines
  • Calculate bubble/dew point pressures and bubble/dew point temperatures for mixtures
  • Calculate PT-Flash, αP-Flash, αT-Flash and PH-Flash for mixtures
  • Apply flash calculations to the basic design of vapour (gas) – liquid separators
  • Calculate azeotropes and heteroazeotropes
  • Apply flash calculations to the basic design of vapour (gas) – liquid – liquid separators
  • Determine the thermodynamic state of a system of given composition at given pressure and temperature


  • Select and use of appropriate diagrams and EOS to describe the volumetric behaviour of fluids, with specific regard to reservoir fluids
  • Formulate separation problems in terms of thermodynamic equations

Type of instruction

  • Lectures, practical exercises, group and individual instructions

Extent and expected workload

150 hours



Name of examThermodynamics and Separation
Type of exam
Written exam
Assessment7-point grading scale
Type of gradingInternal examination
Criteria of assessmentThe criteria of assessment are stated in the Examination Policies and Procedures

Facts about the module

Danish titleTermodynamik og separation
Module codeK-KT-K1-10
Module typeCourse
Duration1 semester
Language of instructionEnglish
Empty-place SchemeYes
Location of the lectureCampus Esbjerg
Responsible for the module


Education ownerMaster of Science (MSc) in Engineering (Oil and Gas Technology)
Study BoardStudy Board of Chemistry and Bioscience
DepartmentDepartment of Chemistry and Bioscience
FacultyThe Faculty of Engineering and Science