Optimisation, Analysis and Control of Thermal Energy and Processing Systems

2022/2023

Content, progress and pedagogy of the module

The module is based on knowledge achieved when studying the 2nd semester on the Master of Science in Energy Engineering with specialisation in Thermal Energy and Process Engineering or similar.

Learning objectives

Knowledge

  • Have knowledge and comprehension within how to design, optimise, control and analyse thermal energy and process engineering systems
  • Have knowledge and comprehension within first principle analysis methods

Skills

  • Be able to judge the usefulness of the different scientific methods used for the design, optimisation and control of thermal energy and process engineering systems using digital platforms
  • Be able to establish and verify scientific hypotheses
  • Be able to apply first principle analysis methods to complex thermo- or fluid-dynamical as well as chemical processing systems

Competences

  • Be able to control the working and development process within the project theme, and be able to develop new solutions within optimisation, control, and analysis of thermal energy and process engineering systems
  • Be able to show entrepreneurship to define and analyse scientific problems in the area of optimisation, control, and diagnostic analysis of thermal energy and process engineering systems, and based on that make and state the reasons for decisions made
  • Be able to materialise innovative ideas within the area of optimisation, control, and analysis of thermal energy and process engineering systems
  • Be able to independently continue own development in competence and specialisation
  • Be able to follow more sophisticated literature, or state-of-the-art, within CFD, turbulent flow, thermal system optimisation and multiphase flow

Type of instruction

Problem based project organised work in groups. The project can be made in cooperation with external partners and the project can be a disciplinary project, a cross disciplinary project or a part of a multi-disciplinary project, where several groups from the department do different parts of a larger project.

Finally, the project can also be a part of a so-called MEGA project also in cooperation with industry, where several project groups from more departments are participating, each doing their part of the large project to find a total solution.

The project work must be documented by a scientific paper (max. 8 pages) accompanied by a project summary report. The project summary report should elaborate the project details and conclusions. The maximum length of the summary report (report without appendices) is 50 pages. For more information see semester description in Moodle.

The scientific paper will be presented at a conference arranged within the Department of Energy prior to the project examination.

The project work should be based upon a thermal energy and process engineering system to which an optimisation, control or diagnostic system is to be set up. First, the system is to be modelled and different system identification methods can be applied to determine the parameters of the system. The system model is verified by simulations and data time series from either a real system or a laboratory set-up. Based on the model, the optimisation, control or diagnostic system is set up to improve the performance of the system, either with regard to power output, energy efficiency, life time extraction, fault detections etc. and the system should be implemented and verified experimentally.

Due to special technical or scientific documentation requirements, the student documents the project work in a project report, which can be prepared individually or in a group within the project theme; however the student’s special preferences for the semester must be approved by the Study Board in advance.

Extent and expected workload

Since it is a 20 ECTS project module, the work load is expected to be 600 hours for the student

Exam

Prerequisite for enrollment for the exam

  • It is a pre-condition that the student has submitted a scientific paper and presented the scientific paper at the CES conference prior to the project examination.
  • In case of a re-exam, the student will have to present the scientific paper in front of a committee made up of the supervisor and at least one internal adjudicator.

Exams

Name of examOptimisation, Analysis and Control of Thermal Energy and Processing Systems
Type of exam
Oral exam based on a project
The project group should orally present the project work and scientific paper. The project group members will undergo an oral examination with internal adjudicator, based on the scientific paper and the project summary report.
ECTS20
Assessment7-point grading scale
Type of gradingInternal examination
Criteria of assessmentThe criteria of assessment are stated in the Examination Policies and Procedures

Additional information

Project on 3rd semester Thermal Energy and Process Engineering.

Facts about the module

Danish titleOptimering, analyse og regulering af termiske energi- og processystemer
Module codeN-EE-K3-1B
Module typeProject
Duration1 semester
SemesterAutumn
ECTS20
Language of instructionEnglish
Empty-place SchemeYes
Location of the lectureCampus Aalborg
Responsible for the module

Organisation

Study BoardStudy Board of Energy
DepartmentDepartment of Energy
FacultyThe Faculty of Engineering and Science