Bachelor Project: Autonomous Robotic Systems and Languages

2022/2023

Content, progress and pedagogy of the module

The module is based on knowledge achieved in the module Real-time systems and programming languages, Modern digital control, Introduction to artificial intelligence, Cyber physical systems design and programming, Programming paradigms and translators, or similar.

Learning objectives

Knowledge

  • Have knowledge about the modelling and simulation of autonomous robotic systems such as robotic manipulators or unmanned autonomous vehicle (UAV) such as drones or ground robots
  • Have knowledge about mission planning, path planning, and autonomous navigation of UAVs
  • Have knowledge about the design of special purpose domain specific computer languages for mission and task descriptions and planning
  • Have knowledge about the use of programming paradigms to implement high level abstractions for concurrency, logical reasoning and learning
  • Have knowledge about centralized and distributed controlĀ 

Skills

  • Be able to design and implement an autonomous robotic system or UAV to solve an automation problem on a specific application domain
  • Be able to design both motion and actuator controllers for navigation of UAV
  • Be able to design and implement trajectory and path planning or visual servoing on a robotic manipulator or UAV
  • Be able to design and implement a task control system for robotic manipulators or mission control system for an UAV

Competences

  • Independently propose and evaluate a robotic system solution to solve an automation problem within an application domain
  • Independently be able to apply modelling, simulation and control techniques for the automation of the considered systems
  • Independently propose and evaluate the architecture in software and hardware of an autonomous robotic system

Type of instruction

Problem based and project organised work in project groups focused on self-critical reflection and proactive participation. The project may be discipline-oriented, interdisciplinary or part of a multidisciplinary project depending on project choice.

Extent and expected workload

Since it is a 15 ECTS project module, the work load is expected to be 450 hours for the student.

Exam

Exams

Name of examBachelor Project: Autonomous Robotic Systems and Languages
Type of exam
Master's thesis/final project
Oral examination with external examiner based on a presentation of the project report.
ECTS15
Assessment7-point grading scale
Type of gradingExternal examination
Criteria of assessmentThe criteria of assessment are stated in the Examination Policies and Procedures

Facts about the module

Danish titleBachelorprojekt: Autonome robotsystemer og programmeringssprog
Module codeN-AIE-B6-6A
Module typeProject
Duration1 semester
SemesterSpring
ECTS15
Language of instructionEnglish
Empty-place SchemeYes
Location of the lectureCampus Esbjerg
Responsible for the module

Organisation

Study BoardStudy Board of Energy
DepartmentDepartment of Energy
FacultyThe Faculty of Engineering and Science