Modulets indhold, forløb og pædagogik
Læringsmål
Viden
- know central notions and results about smooth manifolds, their
tangent spaces, smooth maps, both in theory and for essential
examples
- have acquired knowledge about differential geometric issues
among several of the following topics: vector bundles and vector
fields, differential forms, Riemannian manifolds, curvature
notions, Lie groups, geodesics, integration and/or dynamical
systems on manifolds
- have acquired knowledge about differential topological issues
among several of the following topics: regular and critical points,
embedding, immersion, transversality
Færdigheder
- are able to present proofs of central results within
differential geometry and topology
- can apply notions and methods from these subjects to important
examples
- can through analysis and calculations explain properties of
geometric objects
Kompetencer
- are able to understand and to apply results from analysis and
(linear) algebra for questions originating in geometry
- can independently formulate relevant questions and acquire new
insights with point of departure in interactions of analysis,
linear algebra and geometry
Undervisningsform
Forelæsninger med tilhørende opgaveregning.
Omfang og forventet arbejdsindsats
Kursusmodulets omfang er 5 ECTS svarende til 137,5 timers
studieindsats.
Eksamen
Prøver
Prøvens navn | Mangfoldigheder – differentialgeometri og -topologi |
Prøveform | Skriftlig eller mundtlig |
ECTS | 5 |
Bedømmelsesform | Bestået/ikke bestået |
Censur | Intern prøve |
Vurderingskriterier | Vurderingskriterierne er angivet i Universitetets
eksamensordning |
Yderligere informationer
Please contact Study Board of Mathematical Sciences -
studyboard@math.aau.dk