Modulets indhold, forløb og pædagogik
Purpose:
The purpose of this course is to provide the students with
knowledge of, and to support the students in their understanding
of, mathematical theories and methods of general applicability
within the analysis of linear systems on an application level. In
addition the course supports the students in their understanding of
complex function theory and vector analysis.
Læringsmål
Viden
- demonstrate an understand of concepts, theories and methods
used within the area of complex function theory, including:
- analytical functions and their derivatives
- Cauchy-Riemann equations
- curve integrals
- Cauchy's integral theorem and integral formula
- graphical representations of standard complex mappings; Möbius
(and its special cases), trigonometric, polynomial, logarithm, and
exponential
- demonstrate an understanding of concepts, theories and methods
used within the area of series theory and Fourier transformation,
including:
- Sequences, Series, Convergence Tests
- Power Series - the coefficients and the center
- Radius of Convergence R - Cauchy-Hadamards formula
- Taylor and Maclaurin power series
- Fourier Series for periodic funktions
- Fourier Series for even and odd functions
- Fourier Cosine and Fourier Sine Series
- Fourier Integrals
- The Fourier Transform
- amplitude and phase specters by the Fourier
Transform
- demonstrate an understanding of concepts, theories and methods
used within the area of vector analysis, including:
- skalarfelter og vektorfelter
- rumlige integraler, herunder kurveintegraler, fladeintegraler
og volumenintegraler i forskellige varianter
- begreberne flux og cirkulation
- rumlig differentialer, herunder gradient, divergens og
rotation
- parametriske beskrivelser af kurver og flader
- Greens sætning. Stokeses sætning, Gausses sætning og
Holmholtzes sætning
- begreberne konservative felter og solenoidale felter
- begrebet potentialefunktion
Færdigheder
- apply the presented concepts, theories and methods used within
the area of complex function theory to:
- determine function properties; continuity and analyticity
- apply Cauchy-Riemann equation to funktions to determine of a
function is analytical
- relation between exponential and trigonometric and hyperbolic
functions
- Möbius transform and its special cases, including dilation,
translation, rotation and inversion
- design of Möbius transform based on mapping points
- curve integrals, closed curve integrals, and parameterization
of these
- path-independent curve integrals
- finding critical points for functions
- apply Cauchy's integral theorem and formula to analytical
functions
- apply the presented concepts, theories and methods used within
the areas of series theory and Fourier transformation to:
- Series analysis with special focus at convergence test (e.g. by
Comparison Test, by Ratio Test or by Root Test)
- Specification and analysis of Power Series with special focus
at convergence and calculation of the Radius of Convergence R by
Cauchy-Hadamards formula
- Power Series development by Taylor and Maclaurin
approximation
- development of Fourier Series for periodic funktions
- delvelopemtn of Fourier Series for even and odd functions - and
for arbitrary periods (2L)
- development of Fourier Integrals
- development of the Fourier Transformation for real and complex
functions
- calculate amplitude specters and phase specters for Fourier
Series and Fourier Transforms
- apply the presented concepts, theories and methods used within
the area of vector analysis to:
- fremstille parametriske repræsentationer af kurver og flader ud
fra verbale, formelle eller grafiske beskrivelser (- en
tegning!)
- skitsere givne kurver og flader
- evaluere kurveintegraler, dobbeltintegraler, fladeintegraler og
volumenintegraler
- bestemme divergens, gradient og rotation for givne skalar- og
vektorfelter
- evaluere rumlige integraler under anvendelse og Gausses sætning
og stokeses sætning
- bestemme en potentialfunktion for et givne konservativt felt
samt kontrollere løsningen
- evaluere vejuafhængige kurveintegraler ved at finde
stamfunktion
Kompetencer
- based on given prerequisities, to reason for design choices and
to enter into discussions regarding linear systems using the
terminology of complex function theorym series theory and Fourier
transformation, and vektor analysis
- use relevant concepts, theories and methods within complex
function theory to:
- Determine the correct method of integration for given
functions
- Determine in which domain a given function in analytical
- Recognize the specific transforms Möbius (and its special
cases), trigonometric, polynomial, logarithm, and exponential
- Present solutions to problems in a clear and concise
fashion
- use relevant concepts, theories and methods within series
theory and Fourier transformation to:
- perform analysis of Series and the related Convergence
- make appropriate choices for Taylor-/Maclaurin Series
approximations e.g. on the center and the amount of
coefficients
- make appropriate choices for Fourier Series approximation for
periodic functions e.g. concerning the fundamental period length,
symmetry and the amount of coefficients (covering the spectral
bandwidth)
- determine the use Fourier Transformation - especially for
spectral analysis i.e. for calculation of the amplitude spectra,
the phase spectra and the power spectra
- use relevant concepts, theories and methods within vector
analysis to:
- vurdere en given opgave i vektoranalyse og udvælge den mest
hensigtmæssige løsningsform
- fremstille løsningen således, at tankegangen klart fremgår på
en saglig måde.
Undervisningsform
Forelæsninger, opgaveregning, workshops, selvstudie.
Eksamen
Prøver
Prøvens navn | Beregningsteknik indenfor elektronikområdet 1 |
Prøveform | Skriftlig eller mundtlig |
ECTS | 5 |
Bedømmelsesform | 7-trins-skala |
Censur | Intern prøve |
Vurderingskriterier | Vurderingskriterierne er angivet i Universitetets
eksamensordning |