Biomass Gasification, Combustion and their Advanced Modelling


Prerequisite/Recommended prerequisite for participation in the module

The module adds to the knowledge obtained in Heat transfer; Fundamentals of CFD; Combustion theory; Fluid mechanics.

Content, progress and pedagogy of the module

Learning objectives


  • Understand solid biomass feedstock: Fuel characterisation, thermochemical conversion and the various sub-processes, heat and mass transfer in biomass thermochemical conversion
  • Understand radiation heat transfer without participating medium: Fundamentals, view factors, surface resistance and space resistance, network method
  • Understand radiation heat transfer with participating medium: Radiative properties of gas mixture, radiative transfer equation, modelling of radiative heat transfer
  • Have knowledge about biomass gasification and combustion on particle scale: Time scale analysis, ignition mechanisms, reactions of gasification, regimes of char reactions, modelling of biomass particle conversion
  • Have knowledge about biomass gasification on reactor scale: Principles, key factors, types of gasifiers and their key characteristics, gasifier design, success stories of biomass gasification
  • Have knowledge about suspension-firing of biomass: NOx control by combustion, different arrangements of suspension-firing, modelling of suspension-firing – overview and specific issues, case studies
  • Have knowledge about grate-firing of biomass: Key components in grate boilers, breakthrough, potential problems and solutions, modelling of grate-firing – general strategy and examples


  • Be able to identify the appropriate utilisation technology for a given biomass based on its properties
  • Understand thermal radiation heat transfer, various applications, and advanced modelling of radiation heat transfer without and with participating medium
  • Understand the mechanisms and the key issues in biomass gasification and the modelling
  • Understand the key sub-processes in biomass combustion and various key biomass combustion technologies (their advantages and disadvantages, and modelling strategies)
  • Be able to developing key sub-models for biomass conversion and implementing them into commercial CFD


  • Have in-depth understanding of all the important issues in biomass gasification and combustion, including combustion physics (e.g., radiative heat transfer, turbulent flow) and combustion chemistry (e.g., pyrolysis, homogeneous and heterogeneous reactions)
  • Be able to develop sub-models and codes for the key, special processes in biomass gasification and combustion process and ability to perform a reliable CFD of biomass gasifier and combustor

Type of instruction

Lectures in combination with tutorials, assignments and hands-on.

Extent and expected workload

Since it is a 5 ECTS course module, the work load is expected to be 150 hours for the student.



Name of examBiomass Gasification, Combustion and their Advanced Modelling
Type of exam
Oral exam
Assessment7-point grading scale
Type of gradingInternal examination
Criteria of assessmentAs stated in the Joint Programme Regulations.

Facts about the module

Danish titleForgasning af biogas, forbrænding og avanceret modellering
Module codeN-EE-K3-13
Module typeCourse
Duration1 semester
Empty-place SchemeYes
Location of the lectureCampus Aalborg, Campus Esbjerg
Responsible for the module


Study BoardStudy Board of Energy
DepartmentDepartment of Energy Technology
FacultyFaculty of Engineering and Science