Algebraisk topologi

2018/2019

Modulets indhold, forløb og pædagogik

Læringsmål

Viden

  • know central notions and results from algebraic topology (notably concerning homotopy and homology)
  • know important topological invariants of spaces and maps (among those fundamental groups, homology groups and induced homomorphism) and their invariance under homotopies
  • have acquired insight into systematic functorial methods translating from geometric areas into combinatorial and algebraic areas

Færdigheder

  • are able to apply and to explain notions and methods for simple examples, notably by calculation of relevant invariants
  • are able to reason in correct scientific terminology and symbolic language concerning topics within algebraic topology

Kompetencer

  • can apply algebraic notions, methods and results to dealing with problems originating in geometry
  • can independently formulate relevant questions and acquire new insights with point of departure in interactions of algebra and geometry 

Undervisningsform

Forelæsninger med tilhørende opgaveregning.

Omfang og forventet arbejdsindsats

Kursusmodulets omfang er 5 ECTS svarende til 150 timers studieindsats.

Eksamen

Prøver

Prøvens navnAlgebraisk topologi
Prøveform
Skriftlig eller mundtlig
In order to participate in the exam, students must have actively participated in course progress by way of one or several independent oral and/or written contributions.
ECTS5
BedømmelsesformBestået/ikke bestået
CensurIntern prøve
VurderingskriterierSom angivet i Fællesbestemmelser for uddannelser (Vurderingskriterier).
http:/​/​www.engineering.aau.dk/​uddannelse/​Studieadministration/​

Fakta om modulet

Engelsk titelAlgebraic Topology
ModulkodeF-MAT-K2-6
ModultypeKursus
Varighed1 semester
SemesterForår
ECTS5
TompladsJa
UndervisningsstedCampus Aalborg
Modulansvarlig

Organisation

StudienævnStudienævnet for Matematik, Fysik og Nanoteknologi
InstitutInstitut for Matematiske Fag
FakultetDet Ingeniør- og Naturvidenskabelige Fakultet