Advanced Modelling and Control of Voltage Source Converters

2017/2018

Prerequisite/Recommended prerequisite for participation in the module

The module is based on knowledge achieved when studying the 2nd semester on the Master of Science in Energy Engineering with an electrical specialisation or Master of Science in Sustainable Energy Engineering with specialisation in Offshore Energy Systems or similar.

Content, progress and pedagogy of the module

Learning objectives

Knowledge

  • Have knowledge about average and small-signal models for voltage Source Converter (VSC) circuits including pulse-width modulators and different output filters
  • Understand impedance-based approach to get an insightful yet easy-to-implement way for controller design and stability assessment of VSCs
  • Understand impedance-based stability analysis of grid synchronisation and outer DC link voltage control loops
  • Understand equivalence and differences between models represented by single-input single-output complex transfer functions and multi-input multi-output transfer matrices
  • Have knowledge about passivity-based stability analysis and control for robustly stable VSCs with different grid conditions
  • Have knowledge about virtual-impedance-based control for active stabilisation and harmonic compensation of VSCs

Skills

  • Be able to develop small-signal models for the closed-loop-controlled VSC with closed correlations with time-domain simulations
  • Be able to design current controller, phase-locked loop, and DC link voltage controllers under given dynamic specifications
  • Be able to identify the causes of the different instability phenomena of grid-connected VSCs
  • Be able to design and implement different active damping controllers for stabilizing VSCs

Competences

  • Be able to deal with the instability problems in the emerging VSCs-based power systems, which are nowadays commonly found in renewable power plants, electric transportation systems, and flexible ac/dc transmission/distribution systems

Type of instruction

The course is taught by a mixture of lectures, workshops, exercises in simulations (PLECS) and experiments (dSPACE 1007). Guest lectures relevant to the course will also be involved.

Extent and expected workload

Since it is a 5 ECTS course module, the work load is expected to be 150 hours for the student.

Exam

Exams

Name of examAdvanced Modelling and Control of Voltage Source Converters
Type of exam
Oral examination and exercises
ECTS5
Permitted aids
With certain aids, see list below
Unless otherwise stated in the course description in Moodle, it is permitted to bring all kinds of (engineering) aids including books, notes and advanced calculators. If the student brings a computer, it is not permitted to have access to the Internet and the teaching materials from Moodle must therefore be down loaded in advance on the computer. It is emphasized that no form of electronic communication must take place.
Assessment7-point grading scale
Type of gradingInternal examination
Criteria of assessmentAs stated in the Joint Programme Regulations.
http:/​/​www.engineering.aau.dk/​uddannelse/​studieadministration/​

Additional information

Examination format

Students should do a mini project and submit the report in groups, and then an oral examination will be held.

Facts about the module

Danish titleAvancerede modellering of regulering af effektelektroniske konvertere
Module codeEN-M3-9
Module typeCourse
Duration1 semester
SemesterAutumn
ECTS5
Empty-place SchemeYes
Location of the lectureCampus Aalborg, Campus Esbjerg
Responsible for the module

Organisation

Study BoardStudy Board of Energy
DepartmentDepartment of Energy Technology
FacultyFaculty of Engineering and Science